
ADAO 771 MISSION RESEARCH CORP ALEXANDRIA VA F/6 9/2
FREFORM; AN ALGORITHM FOR PROCESSING FREE-FORMAT DATA,(U)
FEG 81 J GREENFIELD, 8 GOPLEN NGGI?3-ao-c-GGG9

UNCLASSIFIED MRC/WOC-R-G11 NL

MRC/WDC-R-O11

FREFORM: AN ALGORITHM FOR

PROCESSING FREE-FORMAT DATA

Jack Greenfield
Bruce Goplen

February 1981

Prepared for: Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, D.C. 20375

Contract No: N00173-80-C-0059

JUL 2 3 1 1

MISSION RESEARCH CORPORATION
5503 Cherokee Avenue, Suite 201
Alexandria, Virginia 22312

7he c;I c Mico1 Librz,-y

faval Rcc,-r: Laboralory

81 7 22 082

Copy No. M RC/IWDC-R-91 I

EREA AN ALGORITHM FOR
-TWMNG FR1EE-FORXAT DATA

Jack! Greenfield~STl
Bruce /Goplen

Febw~mN8

Prepared for: Naval Research Laboratory

- 4555 Overlook Avenue, SW
Washington, D.C. 20375

C o n tr Nio: N'00173-X,--C-0059:

MISSION RESEARCH CORPORATION
5503 Cherokee Avenue, Suite 201
Alexandria, Virginia 22312

ABSTRACT

A library subroutine named PREFORM has been developed for use on

the PDP-11/1O computer. This subroutine can be accessed by user programs

to process data stored on disk or data entered at the computer terminal.

The use of FREFORM eliminates the need for format statements in programs

which process or use such data. More importantly, restrictions on the

data format and syntax are greatly reduced.

Accession For

NTIS GRA&I

DTlC TAB
Unannounced EJ
Justification

B y - -----
Distribution/

Availability Codes
Avail and/or

D it Special

I
I
I

CONTENTS

SECTION Page

1 INTRODUCTION I

2 HOW FREFORM FUNCTIONS 3

2.1 THE NORMAL, TEST AND DIAGNOSTIC MODES 3

2.1.1 Normal Mode 3

2.1,2 Test Mode 3

2.1.3 Diagnostic Mode 5

2.2 DATA PROCESSING 5

2.3 DATA SYNTAX 6

2.3.1 The Record String and Other Definitions 6

2.3.2 Allowable Data Types 7

2.3.3 Error Analysis 8

3 IMPLEMENTATION AND TESTING 10

3.1 SYSTEM-DEPENDENT PARAMETERS 1.0

3.2 TESTING WITH TESTFF 12

4 FLOW DIAGRAMS 20

5 FORTRAN LISTING 44

II

LIST OF FIGURES

Figure Page

1 Application Modes for FREFORM. 4

2 The General Structure of the Test Algorithm. 21

3 Processing Integers in the Test Algorithm. 22

4 Processing Floating Point in the Test Algorithm. 23

5 The General Structure of FREFORM. 29

6 Initializing FREFORM. 30

7 The Diagnostic Package. 31

8 Filling the Process String. 32

9 Obtaining a New Record Image. 33

10 Testing and Storing Characters. 34

11 Testing and Storing Characters (continued). 35

12 Processing Real Numbers. 36

13 Processing Integer Portion. 37

14 Storing Integer Portion. 38

15 Processing Decimal Portion. 39

16 Storing the Decimal Portion. 40

17 Processing the Exponent Portion. 41

18 Storing the Exponent Portion. 42

19 Storing Real Numbers and Characters. 43

I
LIST OF TABLES

Table Page

I System-Dependent Parameters ii

2 Output from Sample Run of FREFORM in the Diagnostic 15

Mode

3 Variable Definitions for FREFORM 25

SECTION 1

INTRODUCTION

Subroutine FREFORM can process data which are relatively

unrestricted in format and syntax. Thus, it can be used in place of the

usual formatted I/0 statements. The objective is to simplify user

programs while at the same time enhancing the efficiency of terminal

use. FREFORIM differs from conventional processing algorithms in that it

is highly flexible. (NAMELIST, for example, is intended primarily for

batch mode, and requires user knowledge of variable names.) FREFORM is

designed specifically for users of NRL's Data Acquisition System.

The usefulness of FREFORM can be illustrated with a simple

example. Consider the input data sequence,

SHOT 4395 SIO2 1.OOOE+03 4.OOOE-02 3.142E+OO 235,

entered by a user at a terminal console. (The ^ symbol will be used to

explicitly represent a blank, or space.) The conventional program will

contain format statements contructed specifically to read such data

strings. To read the data sequence above, the user's program might

contain the following statements:

READ(5,100)ALFA,NS1IOT,BETA,(COEF(1),1=1,3),1519

100 FORMAT(IX,A4,1X,14,IX,A4,3(2X,EIO.3),15)

Execution of this read statement will cause an ASCII representation of the

word "SHOT" to be stored in the central memory location referenced by the

word, ALFA. Similarly the Integer value, 4395, will be stored in the word

referenced by NSHOT, et cetera. Of course, if the data entry is made

incorrectly (e.g., the wrong spacing, use of F- rather than E-format, et

cetera) the result can he catastrophic if not recognized and corrected.

As an alternative, this same user program might contain the

statement:

CALL FREFORM(VALU,NVAL).

In this case, execution will result in the representation of "SHOT" stored

in VALU(I), the integer, 4395, stored in VALU(2), et cetera. This alter-

native is clearly simpler for the programmer. However, the real virtue of

this approach is that the user at the terminal console is no longer

restricted to any exact format. Thus, equivalent results will be obtained

from the data sequence,

SHOT 4395,SI02,1E3 .04, 3.142 235.

Note the (arbitrary) insertion of commas and/or blanks as well as the

varied syntactical forms in this second data sequence. Acceptable varia-

tions are limitless in number. Thus, FREFORM frees the user from the

necessity of remembering and exactly reproducing program formats.

The remainder of this report is organized as follows. Section 2

explains how FREFORM functions in normal and test modes, the method in

which data is processed, and the simple rules for data syntax. Section 3

discusses implementation on the DEC-10 and the PDP-11/10 computers and

presents results obtained from an actual run using the test and diagnostic

algorithms. Flow diagrams for the test algorithm (TESTFF) and the

processing algorithm (FREFORM) are presented and explained in Section 4.

The complete FORTRAN listing of both algorithms as implemented on the

DEC-10 is reproduced in Section 5.

......

SECTION 2

HOW FREFORM FUNCTIONS

2.1 THE NORMAL, TEST, AND DIAGNOSTIC MODES

2.1.1 Normal Mode

The subroutine, FREFORM, exists as a library subroutine on the

PDP-11/1O. As such, it can be accessed by any user program which requires

data. Such data might reside on disk, but more commonly would be entered

by a user from the terminal console (VT55). Thus, FREFORM provides a

means of entering input data to the computer.

A typical application is illustrated schematically in Figure

1(a). This example consists of a main program and four subroutines, three

cf which require input data to be entered from the terminal. The command

sequence subroutine would be used to enter key words specifying operations

to be performed by the program. Additional data (either "A" parameters or

"B parameters) might be required depending upon the specified

operations. In all cases, the commands (alphanumeric words), parameters

(integer, fixed point, and floating point numbers) and comments

(alphanumeric text) can be entered simply from the terminal in response to

queries from the input subroutines. Data so entered will automatically be

processed by FREFORM.

2.1.2 Test Mod(-

A main program named TESTFF is also available on the PDP-11/10.

This program is dvsigned to validate and demonstrate the performance of

FREFORM. This mode of application is Illustrated schematically in Figiure

l~'-A.

CO14AD PAAETR"AIPARAMETER "B"I LBRTOA
SEQUENCE SI FIANSPECIFICATION SUBROUTINE I

(a) A Typical Program Application in the Normal Mode.

(b) Application in the Test Mode

Figure 1. Application Modes for FREFORM.

.. , . - . ..

~TESTFF allows a user to enter a string of data at the terminal

in an arbitrary format. This data will be processed by FREFORM, and the

interpreted values will be returned to the user (printed) at the

terminal. One of the restrictions on use of TESTFF is that all of the

values returned from each sequence string will be printed according to the

same format specification. Thus, all of the values submitted in each

sequence string must be of the same data type. Of course, this

restriction does not apply to the normal use of FREFORM.

2.1.3 Diagnostic Mode

Subroutine FREFORM contains a system diagnostic mode. It is

activated by altering a data statement in FREFORM so that the variable,

ITST, is set to unity rather than zero. The diagnostic mode causes a

listing of all system-dependent parameters and ASCII character variables

to be printed on the first call. Subsequently, all record images and

process strings will be printed prior to translation. This mode is

extremely useful for implementing the algorithm on a new system, or for

analyzing anomalous results.

Results from an actual run using the test and diagnostic modes

are presented in Section 3.

2.2 DATA PROCESSING

In the normal mode, a sequence string of data will be supplied

by the user in response to a query from the user program. Following a

call to subroutine FREFORM, the processing of this data occurs in four

major steps:

(1) A record Image (usually 80 characters) is read into an integer

array, JCIM. One character is placed in each array element. A

new record image is obtained when all of the characters on the

previous Image have been processed.

(2) Each character in JCIM is tested against each of the four string

delimiters (see below) and possibly stored in an integer array,

JCST, which contains the process string. One character is

stored in each array element. When a delimiter is detected,

testing stops and processing is initiated.

(3) A test is made to determine whether the process string contained

in JCST is a numerical value or an alphanumeric character

string.

(4) The contents of JCST are interpreted and then stored in the

array, VALU, by either a number decoding algorithm or a

character string packing algorithm, according to the result of

the test. The array, VALU, is returned to the calling program

unit (user program) when the entire sequence string has been

read, translated, and stored.

2.3 DATA SYNTAX

2.3.1 The Record String and Other Definitions

The total set of data to be processed by FREFORM may be regarded

as one contiguous string of characters, referred to as the record string.

Four special characters embedded in the record string - the slash, the

comma, the asterisk and the blank - serve as delimiters. Except for the

special case discussed in the next paragraph, all image boundaries in the

data are ignored.

Each call to FREFORM will process a certain amount of data

referred to as a sequence string. The length of a sequence string can be

varied by two different methods. With the first method, the sequence

string terminates whenever a slash delimiter is encountered in the data.

This method is useful when processing large, structured strings in the

batch mode. The second method, which is more useful in the iteractive

mode, terminates the sequence string when it contains a preset number of

record images. (This preset number is contained in a data statement which

initializes the variable, NIPS. For terminal applications, a value of

unity will cause the scope line (one record image) and the sequence string

to be equal. Then each line on the scope will be processed separately,

without the need to type slash delimiters to terminate the sequence

strings.)

Within the sequence string, individual data are delimited by

blanks, commas, or asterisks, as indicated in the discussion of data

types, which follows.

2.3.2 Allowable Data Types

FREFORM allows four types of data:

(1) Numerical Constants - Rational number constants are

recognized in fixed, integer, and exponential formats

(examples - 143, 3.14159, 1.E-07). Data must be

separated by space or comma delimiters. Nonessential

characters will be automatically supplied during inter-

pretation (thus, for example, IE-7 and 1.OE-07 will be

interpreted identically).

(2) Alphanumeric constants - Alphanumeric constants are

recognized by the first character, which must be alpha-

betical. Succeeding characters may be alphabetical,

numerical, or may be any ASCII special character other

than the slash or asterisk, or the system-dependent

control characters (examples - A123, Z$45, START). Data

must be separated by space or comma delimiters.

7

(3) Null Values - A null value is created by recognition of

successive commas, with no intervening characters.

(Blanks, or spaces, between adjacent commas will be

ignored. For example, the character string (, ,,) will

produce two null values.)

(4) Text - Any character string delimited by two asterisks

(at beginning and end) will be recognized as text, and

will be retained intact with embedded spaces, commas,

and all ASCII characters (except the slash and

asterisk which would terminate the string, and the

system-dependent control characters). The text will be

coded in as many words as are required to process the

string.

The number of characters devoted to a single numerical or

alphanumeric constant may not exceed the value of the variable, NCPS. If

the number of characters in any delimited data value exceeds NCPS, a

delimiter is assumed after every NCPS characters in the data, beginning

with the leftmost character. (For example, with NCPS = 4, the string

2345.67891E-23 " would be divided into four values: "2345", ".678",

"91E-", and "23".) Thus, if one of the values represent an incorrectly

formatted numerical constant, an error will occur, as described below.

2.3.3 Error Analysis

FREFORM is intentionally tolerant of varied syntactical forms.

However, two types of errors which can occur in the formation of a

numerical constant are recognized.

Ih

(1) Syntax error in the mantissa - Any data entry (excluding text

delimited by asterisks) beginning with a nonalphabetical

character is assumed to be a numerical constant. If this

constant cannot be interpreted, a syntax error results.

(Examples: 25.OOF+02, ++15, &STRING)

(2) Syntax error in the exponent - The exponent of a floating point

numerical constant must be an integer value. (It may include an

algebraic sign). If an exponent cannot be interpreted, a syntax

error results. (Examples: 2E2., 2EE3, 2E-I)

For these two cases, a blank value will be substituted for the

data entry, and an error message will be printed. A typical error message

is shown below:

******** ERROR DETECTED BY SUBROUTINE FREFORM IN RECORD IMAGE 5 *******

TEXT HERE IS AN ERROR DIAGNOSTIC 25F/

COLUMN: 36 PROCESS STRING: 25F

The message contains information helpful in locating and

analyzing the error. The first line gives the number of the record image

on which the error was encountered. Images are numbered sequentially

beginning from the first call to FREFORM. The second line reproduced the

first eighty (80) characters of the image. The third line identifies the

column number of the entry and reproduces the numerical value of the

process string.

!1

SECTION 3

IMPLEMENTATION AND TESTING

3.1 SYSTEM-DEPENDENT PARAMETERS

Data is read from a file with logical unit number 5. Thus,

input data from an I/O device (such as a card reader or console) will be

processed if the logical unit number 5 is assigned to the input file by

the calling program, or if the logical unit number 5 is associated with

the I/O device by the system. Output is written to a file with logical

unit number 6. Thus, messages will be sent to a printer if the logical

unit number 6 is assigned to the output file by the calling program, or if

this association is made by the system.

In addition, certain parameters and ASCII character variables

ar defined in data statements in FREFORM. Parameter values suitable for

the DEC-10 and the PDP-11/10 computers are given in Table 1. In general,

these parameters must be selected for system compatibility as well as the

intended application. The parameters NCIW and NCRW (number of characters

per integer word or real word, respectively) are needed to pack character

data and to decode numerical data. The parameter NCPS (number of

characters per process string) determines the length of the largest

numerical constant which may be processed; NCPS should be small enough

that numbers beyond the range of the machine will not be accepted. Since

NCPS also determines the length of the largest alphanumeric constant which

may be processed, it is often convenient to make NCPS some integral

multiple of NCRW. (Note also that the length of the JCST array must

always be greater than NCPS. This prevents overflow of the array and

ensures the existence of at least one blank at the end of every process

string.)

- ' l,,, ,i ,, " Inl l f l . .] i . .. i " - i, .I (,.

TABLE 1

SYSTEM-DEPENDENT PARAMETERS

Parameter DEC-10 PDP-11/10

NCIW 5 2

NCRW 5 4

NCPS 20 20

NCPI 80 80

NIPS 1 1

The proper value of NCPI (number of characters per image)

depends on the file or I/O device from which data is read. A large value

may be useful when reading large sections of text since all of the text

can be returned at one time. Setting NIPS to unity, however, makes each

sequence string exactly one record image in length. This choice is more

suitable for terminal applications, since it allows the operator to omit

slashes from the data sequence.

THE ASCII character variables are used by FREFORM for comparison

tests. JCSL, JCAS, JCSP and JCCO are used to identify delimiters. JCMI,

JCPL, JCAE, JCDP, JCNI and JCNF are used to identify parts of a numerical

constant. JCAI and JCAF are used to determine whether the first character

in a process string is alphabetic. The bits containing the character in

each of the character variables must occupy the same position within the

machine word as they do in the storage arrays JCIM and JCST for the

comparison tests to function correctly. The diagnostic mode in FREFORM

can be enabled by changing the value of a flag (ITST is initialized in a

data statement) from zero to unity. This will result in a listing of the

system dependent parameters when FREFORM is first executed. In addition,

all data processed in this mode will be listed at various stages of

processing. This diagnostic capability is provided to aid in

implementation of FREFORM on a different system. An example of its use

follows.

3.2 TESTING WITH TESTFF

The main program, TESTFF, is intended to provide demonstration

and validation capability. It allows a terminal operator to send data

sequences to FREFORM, and to immediately inspect the processed results.

To use TESTFF, the type of data (see Section 2.3.2) must be

specfied by a keyword at the beginning of each sequence string. (If the

data type is not sperified In the first sequence string, program executlon

Il

,,, ...i-'- '" j1. .

is terminated.) Once a data type has been specified, all sequence strings

are assumed to be of that type until a new type is specified. TESTFF

recognizes three data type keywords: "INTG", "FLTG", and "TEXT". Program

execution is terminated by the keyword, "STOP", which must occur at the

beginning of a sequence string. Any data following the word "STOP" will

not be printed by program TESTFF.

Table 2 presents output from a sample run in the diagnostic mode

made interactively from a terminal console. Note that the output

originates both from TESTFF and from FREFORM (diagnostic mode). The

source is clearly indicated by the headers at the beginning and end of

each section of output.

The first execution of FREFORIM (diagnostic mode is enabled)

produces a listing of the system-dependent parameters and ASCII

characters. In the first example, the data sequence begins with the

keyword "TEXT". Diagnostic output from FREFORM shows the actual process

strings, while the TESTFF output lists the representation of each word in

the array, VALU. Thus, characters representing the word "TEXT-" are

stored in VALU(1), and so forth.

The second example differs from the first in that alphanumeric

text is used (asterisk delimiters). Note the embedded blanks, commas, et

cetera in the processed output. The third example involves integer

numbers. Note the representation of a null value, produced by two

adjacent commas. Floating point numbers are processed in the fourth

example, which includes a deliberate error (5F2 is syntactically

unrecognizable). The resulting error message would have been produced

even if the diagnostic mode is disabled.

jThe final example consists of three sequence strings of text.

(The first two are delimited by slash characters.) Note that the integer

value, 2, in the second string is correctly interpreted by FREFORM, even

though TESTFF attempts to print the result in a text (alphanumeric)

format. The final sequence string contains the keyword "STOP", which

terminates execution of TESTFF.

I1 1

[

pr

OUTUT 1,KS>IJ U,. OF RLJ0
I N TNIT.1) IAGNOSTI.C >10)1:

?Itt. ftGRMh TESIFF - WA'CCH 1931 M

z*?t~t Z~t~t~*SLIBROUT,:UE FREFOR DIAGNOSTIC t±** tto

ASCII CHARACTER VARIABLES

JCA-tE JCAlF JCAI CAScl JCCO JUDP

MiI JCUT J C 1,1I JCPL HECIL J
- 9 0 + /

SYSTE&-DEPE1IDEUT PARAMETERS

N CI li I! CW NEpI NCPS NIPS
I r G6 20 1

t42~~ *t4.*t*Z~ttt~t~* [1:0 0 I,'CISTIC ttt* t*4 S P

TEXT (L!>LAIC CHARACTER STRINGS: R~T' 71223, ATRS'WML

::*Ar'~tt~ttr 4 4*SUBROUTIE F PEFOG DIACV0STTC :tns*tttzn

FESUEIICE STRING: i PECS~i) IIGE i

TEXT ALHNMRCCHRCE UtS.US 71123, ATEStC

C CLUtiN. i PRC C ES S' TP.INt1G: I
(CLUNK 1 r PL0ESS ST2RIIG: AtLP!I;N'lIF PI C

22 P002223 311:0 p r,%

C LLIN: 33 P P0CESS S 5ITG: 11:

S R

TEXT

CT E R
STR IN
GS:

~ EtD OUTPUT FRO," PRO 7'ih TESTFF

IT FXTST R7S 3 IT N E~itPEDED .:LAI' 'S , M'J riAS, E EC 1I'l Ct (il'.C LS L 7 rT

SM£UROUTI 1 FOEF OR DJtiC,;OST IC t

SE1QUE';.E STRWC:f 2 RECORD IIAGE: 2

TFXT STPfl'S t3ITH EMEELDED 2.LA WS, CC.,iAS, SPECIAl CH (,i~CTERS V NUM1ErS 7CG0

COLUh i PPOCE:SE STP.I. : TEXT Shi!NU ITH E 3
CC L!,'.2 P R CE SS 3 .STRh, E D DED t-L A 1 , CD l- ,
M -I '. 4 1 P 0'7-S 5S ST R IC ! ! Ef71C I .,L C: i .%fT E.S

C 0L U t, 2 P P C ESS S T 211 &0b.11 F UR S 7 0

OU ET,. U T F-7Cl P GCAI T E T FF t . f*-;t

C MIT

7.

LR

t*2t*ttt**lot EUD OUTPUT F3On PRO22-H TES'-TEr ttttttt Tt t~~

INIS 7oO 600 C. O a AoD1

Zfl$Zt~t#*ttttt*?tSUPOUTE R EEFOR OTAGNOSTIC t* ** 1 tt*

SEC.UENCE STRING: 3 RECORD I VtE AS

IbI MTC 00 600, zOO, ,

CCLUt N: i PROCESS STRI!!O: IXTO
COL,' M to FPCOEE SS STIhS: "'q

2,I P FCEES STR 7 Atr;I c
CC L UtUI 7 PRO '0CESS l - STEIH D!0G

Z 37 t 44- %t. CU TOUT FF-lCH POGrA1I 131FF It~t t t 't 1 tt

600
S C6

ELK -7EO0f2, LOS SE? 2R :36 ,

K C -" T

C,

I'BL.E 2 ,oi

£OLCH 3 PROCESS STIHO: SF?

t~:~t~tERRORl DETECTED DY SUL-RO'JT~IU FP.EECC IU PECO MDi 4*ittttt

FLTC 67+? bE? S E? SF? 22 -30

CGLU~rt1: 316 PROCESS STRING: SF?

CCELIN: 43 P2OCESS STRING. 3010

t$~*~tt~ ; tt**t*~ UTPUT FRCG PCCM TEMP'T t flFt~*

FLIC
-0.200000E+O3

OM5PU0 E+ 93

*Ztttft~tt ttv,. t HD OUTPUT FRON1 PPOPANl TESIFF ttftkt tt

lE"'I THnEE SECUEZ CTPP'CS / E IS O.2/STOP

~~~*t~4 ~ tt~ SUPPOUTIVE F;lrEED DIAGNOSTIC .t* ~* tt t$l4

E EQU-2C E IS TRIN . S FFCR7D inE

IF-T TilNPEE SEC1!EiE STE1. Mt / 3 0E IS . 2 /' T F?

OCLL21~ 1 12H Br: .lHF



. *- I

TEXT

SEL

STR~

CCL 'I:3 PROMES STRINlG:HE:
CCLUr;N: 4(.' PROCESS STRING": IS
CCL: 4. PREO-,"hS ST71 I!NC MO.

C~itt *2 PROCE-SS iR;I:

NO.

?''"ttt,~t~tV4 :P ENDT OUTPUT 771 PRSP1 TESTER F

C CI-U! Si PSUCCIS STRN TC.'

S T

t:~t-2? :z~~r~tT iH Q TFUfL 1',~ FC t tt t'..;.



SECTION 4

FLOW DIAGRAM S

This section describes the operation of program TESTFF and

subroutine FREFORM. In general, the code breaks down into a number of

relatively well-defined algorithms. Each such algorithm is presented on a

separate flowchart, and is given a unique name, such as "INTEGER", for

example. Then the use of this particular algorithm by other sections of

the code would be indicated by the symbol, FITTTEGET11 , in the flowcharts.

The following discussion refers to the flowcharts of TESTFF,

shown in Figures 2, 3, and 4. At the beginning of the program, a header

is printed. The major loop is then executed until it is terminated by the

flag ISTP. Inside the loop, FREFORM is called. The second loop (number

2) checks the data value in the first element of array VALU against each

of the four keywords "INTG", "FLTG", "TEXT", and "STOP". (The keywords

are contained in an array, VWRD.) If a match occurs, the flag JFLG is set

to thc current value of the loop index, INDX. Following the loop, a

header is printed. A "computed GOTO" on JFLG is then executed causing a.

branch to one of four program blocks which corresponds to the keyword

matched. Three of the blocks (corresponding to keywords "INTG", "FLTG",

and "TEXT") cause the contents of VALU to be printed in a format described

by the keyword. Use of the variable NFST in program blocks "INTG" and

"FLTG" permits the keyword to be printed in character code format. The

fourth block sets the flag TSTP and causes the word "STOP" to he printed.

When the major loo) is terminated, a footing is printed, and execution

stops.

'll



TEsrFF

WRITE(6, 10)
JFLG=4
ISTP=0

NFSTlA=VWRD( INDX) .NE.VALU( 1)

2NX= ,NVAL),

WRITE(6 ,30)A

ISTP.TQ.

0

WRITE(6, 70)

S TOPI Figure 2. The Gecral SLricture of Lho2 Test ALgoriLhm.



INTG

CEL)
00

y NFS' N

.EQ.

WRITE(6,60) LU(

105

105

y N
-- < NV IT.

NVAL. 11T.
N 's T A VALU(INDX).NE.BWRD

3 INDX=

NFST, VAL

N
A 108

WRITE(6,60)3WqD INTG=VALU(INDX
WHITE(6,40)INTC]

EXIT REPEAT 3



FLTG

A = VALIJ(IDX).NE.BWR

R1PAT2

1 1

yi'i~ NNPr"~ji. J~I n jt i l ~t A~ tIi

<NA- T



A complete list of variables and definitions used in subroutine

FREFORM is presented in Table 3. The general structure of FREFORIM is

shown in Figure 5. The single alternative decision block at line 260 is

part of the diagnostic package. The rest of the diagnostic package is

contained in the decision block in Figure 6, and in "DIAGNOSEI" and

"DIAGNOSE2"(Figure 7). Note that "DIAGNOSEI" is executed only on the

first call to the subroutine.

The major loop (number 1) in Figure 5 is executed until the end

of the current sequence string. Section 2.2 describes the basic steps

which occur inside this loop. Steps (1) and (2) mentioned there occur in

the "FILLSTRING" algorithm (Figure 8). The test described in Step (3) is

shown in Figure 5 at line 240. Step (4) occurs in either "NUMBER" (Figure

12) or "CHARACTER" (Figure 19).

Figure 8 shows the "FILLSTRING" algorithm. In the first loop

(number 2), the array JCST is filled with blanks. The process string loop

(number 3) is executed until the process string is terminated. The

cdecision block at the top of the loop fetches a new record image when

needed (see "READCARD" in Figure 9) or terminates the sequence string when

NIPS records have been read. Each time through the loop, one character

from the current record image is tested and may be placed in the process

string. Testing and storing occurs in "TESTI" (Figure 10) and "TEST2"

(Figure 11). Note that the process string may be terminated by a blank, a

comma, or a slash, or by the test at line 380, when NCPS characters have

been read.

The "NUMBER" algorithm is shown in Figure 12. Integers, as well

as the integer portion of fixed point numbers and floating point number

mantissas are all processed in "INTEGER" (Figure 13). The portion of any

number to the right of a decimal point is processed in "DECIMAL" (Figure

15) and stored in "STORDEC" (FIgure 16). Exponents are process-d in

"EXPONENT" (Figure 17) and stored in "STOREXP" (Figure 18). In "STORNI'M1"

(Figure 19), valid processed numbers are placed in the VAL! array and an

error message Is printed for incnrrectly formatted numbers.

!4



TABLE 3
VARIABLE DEFINITIONS FOR FREFORM

DFCT - factor used to compute DSTO
DSTO - variable to store decimal portion of number
ESGN - sign of exponent

ESTO - variable to store exponent
EXPN - exponential multiplier for number processing
IALP - flag for alphanumeric character string processing
ICIM - image position of first character in the process string
ICOM - flag to detect sequential commas
IERR - flag to indicate error in numerical value
IFLD - flag to indicate text processing
INDO - index for general use
INDI - index for general use
IONC - flag to indicate first execution of subroutine
IPRO - flag to initiate word processing
IRET - flag to exit subroutine after sequence completion
ISTO - variable to store integer portion of number
ISTR - flag to transfer character from image to process string
ITST - flag to produce system diagnostic
JCAE - ASCII character for fifth alphabetical character, (E)
JCAF - ASCII character for final alphabetical character, (Z)
JCAI - ASCII character for initial alphabetical character, (A)
JCAS - ASCII character for asterisk symbol, (*)
JCCO - ASCII character for comma symbol, C,)
JCDP - ASCII character for decimal point, (.)
JCHA - current character in the record image
JCIM - array of characters in the record image
JCMI - ASCII character for minus symbol, (-)

JCNF - ASCII character for final decimal character, (9)
JCNI - ASCII character for initial decimal character, (0)



TABLE 3 - continued

JCPL - ASCII character for plus symbol, (+)

JCSL - ASIII character for slash symbol, (/)

JCSP - ASCII character for space symbol, ( )
JCST - array of characters in the process string

JCTF - character transfer variable in number processing
JNUM - array of decoded digits for number processing

NCCT - number of characters counted
NCIM - pointer for the image string character array

NCIW - maximum number of characters per integer word

NCLW - number of characters in the last word processed

NCPI - maximum number of characters per image string

NCPS - maximum number of characters per process string

NCRW - maximum number of characters per real word
NCST - actual number of characters in the process string

NCTF - number of characters transferred in nu1r1 procssing

NFST - position of first character to be trans"ferred

NIMS - number of images processed in current seqicice strin,
NIMT - total number of record images processed

NIPS - maximum number of images per sequenc,
NLST - position of last character to be transferred
NPRO - pointer for the process string character Array

NSEQ - total number of sequence strings processe d

NSGN - sign of number

AL, - pointer for the ouLpot array VALU

NWTF - number of words transferred in number processing
RNUM - array containing decoded digits in numhhr proccssing
VALU - output array containing processed data



The "INTEGER" and "EXPONENT" algorithms have similar

structures. A decision block at the beginning detects an algebraic sign,

and a counting loop then determines the number of numerals before the next

non-numerical character. Note that the character which terminates the

counting loop may be the blank which is appended to every process string.

Each of the numerals counted is used to form an integer value in "STORINT"

or "STOREXP".

The formation of an integer value from ASCII characters is

accomplished by an ENCODE/DECODE statement pair and a small loop, all

located within a larger outer loop. ASCII characters in the elements of

JCST are packed into a temporary variable, JCTF, by the ENCODE statement.

The characters are then converted to integer representation one at a time,

and placed in the elements of JNUM by the DECODE statement. The integer

representations in the elements of the JNUM array are multiplied by

decreasing powers of (10) and summed.

"DECIMAL" is similar to "INTEGER" and "EXPONENT", with two

exceptions. First, no tests are made for an algebraic sign. Second, each

of the numerals counted is used to form a decimal fraction. Note that

"DECIMAL" is not executed unless the character terminating the counting

loop in "INTEGER" is a decimal point.

Error analysis occurs in two places in the number processing

algorithm. The first check occurs after the integer and decimal process-

ing algorithms, at line 450 of "NUMBER". A test is made to determine

whether the next character is the letter "E". If so, then the exponent is

processed; if not, then an error flag is set. The second check occurs at

the end of "EXPONENT". Again, a Lest is made to determine whether the end

of the process string has been reached. If not, then an error flag is

seL.



In the "CHARACTER" algorithm (Figure 19), every character in the

process string (except the appended blank) is packed into the VALU array

with an ENCODE statement. The counter NVAL is then incremented by the

number of words stored in VALU.



STARTRIN

2E 

EA 

1

A26 

230L. 

Q 1 . R J s ( ) .L . C F A D J ST 1 G . C

26 ur 
2. 

Th0XnrI Src tr f FEO M*T 
TNY 

N S

N C



INITIALIZE

.NE.

200

N NCI,

NIS=



DIAGNOSE I

yRT(,0 JCAE, NCF CI

WRITE(6,20)JCJNJCI

JCPL, JCSL, JCSI'
WRITE(6,55)
WHITE(6,60) NCIW, NCHW,

ENT R IE ,10

EQ

ICI = NCIM-NCS'F
WRITE (6,9(0) 1dIM, (JCST(INDO),

I NiO = I1, NCPS)

Figir., 7.* Tht- Dliagnostic lc ka,



FILLSTRING

ENTER

INDO=I,

2

NCPS 2 0

FsT (INDX) lli

I -
I

NCST = 0

IALP = 0 REPEAT2

IPRO = 0

310

IPRO

3
.NE.1

N NCIM y

.NE.
, >1

NCPI

EXIT

N NIM y
.LT.
NIPS 320

C' M(NCPI)=JCSLENCIM=NCPI-l READCARD

330

IPRO=l

ISTR=O

NCIM=NCIM+l

JCHA=JCIM(NCIM)

REPFAT3

Figure 8. Fillilig Lho Proc,!ss SLring.



READCARD

4,320

NCIM =0
NIMS =NIMS+1
NIMT =NIT+I
READ (5,10) (JCIM(INDO),

INDO =1, NCPI)

<. EQ

WRITE (6,20)

WRITE (6,80) (JIcM(INDO),

INDU1I, NCPL

Figure 9. ObLaining a New Record Image.



'r I.:ST I

340

N y

N y 350)

Cf
__3 45 TEST2I

B =(IJCIiA.NE. JCAS)
C ( vII).E.1I)



E~ NNI,

350
N y

IPO=



NUNBER

400

IERR = 0

NFs'r =

N PR I "
ICIM = NCI>I NCST
ISTO = 0
ESTO = 0
DSTO = 0.
EJECT = 1.
ESCN = 1

430
JCTyR) NE

JCDP

D EC IMA L

yL N

NTOBNJST

I I'Rf



INTFGER

ENTER

N JCST y
(NPRO).NL.

icmi N CST 410 y
NPRO=NPRO+i (NPRO).NE.
NSGN=-l icp L
NFST=NPRO NPRO=NPRO+l

I I NFS'r=NPRO

L

1 420

JCST(NPRO).ILE.
JCNF.AND.

4 JCS'r(NPRO).GE.
JCNII

I 
PRO+1

F-N-ccT NPRO-NFST REPEAT4

y N
NCC'F.EQ.__L< 

0

S STORINT

EXI ED
C 

T

Figurk! 13. Procussing lntcgk.!r PorLion.



STO R INT

NC'rF=NCFw-NI+W(NcLW) 1)N INNWTF

NLSTF=NFST+NC'FF- 1
ENCODE(NCTrF,150,JCTrF)(JCSTr(INDI) ,I~Ni=

NFS'r, NLST)
D)ECODE(NCTF, 130,.JCTF) (JNUM( INDI), INDI=

I , NCT F)

1NCT F

N EXPN=10--**(NCCTr-IND I
-NCIW*( INDO-1))

I STO=I ST + J NU1M I N 1)
*LXPN

REPE1AT5 R EP EAT 6



DEC [MAL

ENTER

NPRO=NPRO~ 1

NFSThNPRO

0

442 ~ TOR R DECl

F igu NRO I 3* P roEsin 
4 TE1Poti

REPEAT



STORDEC

CENTER

NWTF1I+(NGCT-I) /NCIW
NCLW=NCCT-~NCIW*(NWTF-I)

8 INDO
I ,NWTF

NCTF=NCIW-(NCIW-NCLW)I'( INDO/NWTF)

NLST=NFSTF+NCTF- I
ENCODE(NCTF,150,jc''F)(JCST(INDI) ,INDI=

NFST , NLST)

DECODE(NCTFF,140,JCTF)(RNUM(INDI) ,INDI=
I ,NCTF)

NFST=NLST+ 1

EXIT 9 INDI
I ,NCTF

N )FCTFDF'*. I
DSTO=DSTO+

DFCTr*RNUM( INDI)

REPEAT8 REPEA'r9

Fig~ir-] Storing Owe Decimal Port ion.



E X ) N T

460

NP RO-N PRo+ I
NFSTr=NPRO

N Y

ISN1NE. JCM 146

N PRO N P RO+ Icll

NFSTF=NPRO NPRO-'"PRO~

J Cs T(N PRO)
.LE. JCN F. ANI).

6 JCST(NPRO)
.GE.JCNI

472 NPRU "PRu+1]

Fc -(R, r~ RI:AT6

Y4 N5
y CT Q

C0

/~7 =1

i 7.



S TO REX P

NIEIF 1+ N C - ) NCI D (CW1 0 J T )( C T I D ) , N I

11OENT,3,JT)JU(NI ,TNDI=
1,NNCTF

NFSF=NLST+T)

1 ,NCTF

EXPN=1O**(NCCTF-INDI
-NCIW*(INDO-1))

ESTO=ESTFO+JNUJM( INDI)
*EXPN

REPEATII REPEAT12

Figure 18. SLorin),, Lht,- Fxponenl Portion.



INVAI,=NVAL+1

VALU(NVAL)=NSCNl* VALUI(NVAL)=IH
(FLOAT(ISTO)+DSTO) IVRITE(6,80)
*1().**(ESc\N*17STO) WRITFr(6 ,80)

WRITE (6,80)
WRIT17(6,70) NI>YI'r
WRI'rE(6,80) (JCIM(INDO),

INDO=1 ,NCPI)

WRITE(6,90) ICIM,(JCST

WRITFE(6, IOU)

CH{ARACTER(

500

M(:'rF=NCI?1* ( +(N'C')r-l 1) NcRW)
ENCODE (NCTF, 1 0, V,%1,(NVALI+I ) )O(CST( I NDO), IN)=1 ET

NVALNVA~l (NCT ) /NCIMw

Fi ,ire 19. Start ng Rea im uhrs ndl (hractor;..



SECTION 5

FORTRAN LISTING

This section presents FORTRAN listings for the program, TESTFF,

and the subroutine, FREFORM, exactly as implemented on the DEC-10

computer.

)

5l



PRC"'M TESTFF
£
C %, 4 * . VALIDATES PERFORMANCE OF SUBROUTINE FREFOR *1%11 0
I'r
C THE PURPOSE OF PROGRAM TESTFF IS TO YALIDATE THE PERFORMANCE OF
C CUiTROUTINE FREFOR. TESTFF ALLONS DATA TO BE SENT TO FREFOR,
C AND PRINTS THE VALUES RETURNED. ALL OF THE VALUES RETURNED FROM
C EACH SEQUENCE STRING ARE PRINTED ACCORDING TO THE SAME FORVhAT
C SPECIFICATON. THIS IhPOSES ONE RESTRICTION ON THE NORMAL OPERATION
C OF SUBROUTINE FREFOR: ALL OF THE VALUES RETURNED FROI EACH
C SEQUENCE STRING MUST BE OF THE SAME DATA TYPE.
C
C THE TYPE MUST BE SPECIFIED BY THE USER BY A KEYWORD AT THE
U liEGR ,Nl!G OF EACH SEQUENICE STRING. IF THE DATA TYPE IS NOT
C SFECIF-i-D IN THE FIRST SEQUENCE STRINC, PROGRAM EXECUTION IS
S1TEIAED. ONCE A DATA T)PE HAS EEN SPECIFIED, ALL SSOU GF

C STRI: GS ,.E ASSUMED TO BE OF THAT TYPE UNTIL A NEW TYPE IS
C SPECIFIED. THREE DATA TYPE KEYNCROS ARE RECOGNIZED: "INTO"
C (FCR INTEGER VALUES), "FLTG" (FOR FLOATING POINT AND FIXED POINT
C VALUES), AND "TE' r" (FOR ASCII CHARACTER STRINGS).
C
C NIMERICAL FORMAT SPECIFICATIONS IN PROGRAM TESTFF MATCH THE RANGE
C OF VALUES ACCEPTED BY SUbROUT! E FREFGR. THE TEXT FC.RlAT
C SPECIFICATION IN TESTFF WILL ACCCMODATE 10 ASCII CHARACTERS, BUT
C THE MAXINU;i LENGTH OF TEXT STRI ,S RETURNED BY SUBROUTINE FREFOR
C IS DETERMINED BY THE WORD LENGTH AND NUMBER OF BITS PER CHARACTER
C OF THE SYSTEM IEING USED.
C

C PROGRAM EXECUTION IS TERMIN'ATED BY THE KEY"ORD "STOP", WHICH
C MUST OCCUR A1 THE BEGINNINFG OF A SEQUENCE STRING. ANY DATA
C FOLLO'IIrG THE WORD "STOP' WILL 'IOT BE PRINTED If PROGRAM TES FF.
11

C
C
C ** *** '* FORMAT DEFINITIONJS

10 FORMA(,'/i,24(IHt*),31H PPrCpAM TESTFF - MARCH 1?2i ,2S(lH)/f)
20 FC MATI(/X,,211H t) SH OUJI1;111F [O.M P OAM iT[PIFF ,26(, I l)

71 I/2.; t ,'i3, H E D OUT -) , T iF R CXL TECTFF ,4,',1*T)
40 Ftj MAT I X,I1,0

t, 1 FCR MAT i X,[ Al )

, 0 FCR 
IA T(iXE1A 

)

71 FOpTr.,"r-II ,4'H F ,Pr¢,, T--STFF 1 1 :UT"I{' Ci -LETE: ,



REAL YALU(50),Vt1RD(4)
C

DATA VUl-RD/4NINITG ,HFLTQ,,4HTEXT ,4HSTOP/
DATA BURD/iH

C
c INITIALIZE 1/0 UNIT 6 TO TERMINAL.

OPEN(UNIT=b, DEVICE='TTY')
C
£ PRINT PROGRAM HEADER. INITIALIZE FLAGS.

WRITE(6, 10)
JFLG=4
ISTP=0

C
c ~ *& ~ZP LOOP UNTIL STOP REOUESTED t0**t0*4*00* 4

80 CALL FREFOR (VALU,NYAL)
NF ST =i

C
C TEST FIRST VALUE FOR KEYUORD, SET JFLG.

D9OINDY=i,4
IF(VWIRD(INlDA) .IE.VALU(i))00T090O
JFLCz I NDX
NFST=2

90 CONTINUr'
c

C PRINT OUTPUT HEADER, THEN BRANCH TO PRINT VALUES.

COTO(100,ii0,i20,130)JFLG
C
C INTEGER PROCESSING.
c
C, PRINT KEYUORD IN CilARACTER FOIRMAT.

i00 IFQ4FST.EQ.1)GOTOir~
* WRITE(6,60)VALU(i)

C PRINT VALUES IN INTEGER FORMAT.
i105 IF(NVjAL.LT.NFST)GOTOi40

DOi69It;DX~hFST WJAL
IF(VAiLU(INIDX) .NE.r.RD)COTOiOB
WRITE(6,60)RVl
COT0119

102 INTCG'JALU(INDX)
lRIE(6A"0)1N7C

i b7 CONTINUF
COTO1 O



c FLOATINC POINT NUMBER PRrJCEESING.

C PRINT KEYUORD IN CHARACTER FORHAT.
liC IF(NFST.EfJ.i)GOTOil

WR ITC(6,6 a) VALU ( )
c
C PRINT VALUES IN FLOATI-:C POINT FORMAT.

112 IF(NVAL.LT.NFST)GOTC44
DO 1 91NDX=NFST , NVAL
IF(VALU(INOIX) .NE.I:WRD)COT~)I1H
WRITE(&,65)BWRD

jBWRITE(6,S0)VALU(INDX)
119 CONTINUE

C TEXT PROCESSING.
c
c PPINT VALUES III CHARACTER FORMAT.

c IEPR$dNATE PROGRAM, EXECUTION.
CI
C FRINT 'STGP', SET ISTP.

13 14R ITE(6,60) VRD (4)
ISTPzi

c PPINT OUTPUT FOOTINGO, TESIT ISIP TO CONTINUE.
140 !,'RITE(6,30)

C
c PTTPA UiIO

Wc T(67i
SC (,



SUED:'OUTINE FREFGO, (VALU, N','AL)
C
C t*;*-" PROCESSES FREE-FORhAT DATA TO !NTERNIAL FORMAT ,
C

C SUBROUTINE FREFOR IS DESIGNED TO PROCESS FREE-FPRMAT LATA U.'HICH
C IS OBTAINED FROM AN EXTERNAL PECORD, FOR EXAMPLE, A CARD READER
C OR AN IN;TERACTIVE COiNSOLE. THE DATA MUST CONSIST OF A STRINC
C OF ASCII CHARACTERS, INCLUDING THE DELIMITERS, SPACE( ), CIA(,),

C ASTERIS,(.,), AiND SLASH(/). FREFOR INTERPRETS DATA SEQUENTTIALLY
C ACLCIDING TO ITS INTERNAL FORMAT, AND STORES INTERi-IAL VALUES IN
C AN ARRAY (VALU). FOUR TYPES OF VALUES ARE RECO.SNIZED.
C
C (i) N,.ERICAL CONSTANT - RATIONAL NUMBER CONtSTANTS ARE
C RECONIZED IN FIXED, FLOATING, AND EXPONENTIAL FOR HATS
C (E.PLZS - 143, 3.1419S, i.E-07). VALUES MUST BE
C SEPARATED BY SPACE OR CONNIMA DELINITERS. NONESSEHNTIAL
C CHARACTERS 'ILL BE AUTOMATICALLY SUPPLIED DURING
C INTERPRETATION (THUS, FOR EXAMPLE, iE-7 AND i.OE-97 1ILL
C lE INTERPRETED IDENTICALLY). THE NUBEP OF CHARACTERS

r IEVOTED TO A 5INGLE CONSTANT IS LINITED TO NCPS (EFINED IN A
C DATA STATEMIENT)
C
C (2) ALPH;NUMERIC CONSTANT - ALPHANUMERIC CONSTAiTS ARE
C REC NIZED DY THE FIRST CHARACTER, UHICH MIUST BE
C ALPHABETICAL. SUCCEEDING CHARACTERS MAY BE ALPHABETICAL,
C N-UhERICAL, OR ANY ASCII SPECIAL CHARACTER OTHER THAN CLASH
C OR ASTERISK (EXAMPLES - Ai23, Z$4S, START). VALUES
r. MUST BE SEPARATED BY SPACE OR COM'iA DELIMITERS. THE
C NUMBER OF CHAPACTERS DEVOTED TO A SINGLE CO STANT IS
C LIMITED TO 0CPS.
C
C (3) NULL VALUE - A NULL VALUE IS CREATED BY RECOOFNITION OF
C SU';CESSIVE CO MAS, WITH NO INTERVENING CHAPACTES.
C (BLANKS, OR SPACES, BETWEEN ADJACENT COMMAS ',JILL PE
C ICNbRED, FOR EXAMPLE, THE CHARACTER STRING (, W) I.ILL
C PRODUCE TWO NULL VALUES.)
C
C (4) TEXT - ANY CHARACTER STRING DELIMITED BY T0OIRIS
k (A{ PEGI'NINE, AND END) HILL PE RFCONIZED AS TEXT, AND HIILL
C :E RETAINED iITACT WITH EMBEDDED SPACES, COMMAS, ANJD ALL
C ASCII CHARACTERS EXCEPT TE SLASH AND ASTERISK THE
C TE,,T '41_L BE CODED I: AS MANY VALUES AS ARE REQ1IJIED TO
C P 7[CS2 THE STPING,
C



C THE OPERATION OF FREFOR RELIES UPON DEFINI, I OF FOUR TYPES
C OF CHARACTER STRI'GS, EACH IN GENERAL CONTAINItNG A DIFFERENT
C N.... C7 CHARACTERS. THE RELATIONSHIPS FETINEEN THE FOUR TYPES
C OF C 1AR;iCTER STRIIIGS ARE AS FOLLOS.
C

C (1) RECCRD STPING - THIS IS THE COMPLETE SET OF ALL
C SEC.,,E,,CE STRINGS To PE PROCESSED THROUGH SEQUENTIAL
C EXECUTIONS OF FREFOR.
C
C (2) SECUECE STRING - WITHIN THE RECORD STRING MAY EXIST
C ANY NUMBER OF SEGUENCE STRIN'GS, DELIMITED BY A SLASH
C AT THE TRAILING END. NO DELIIITER IS REQUIRED IF THE
C SECUENCE STRING IS LIMITED BY THE SPECIFIED NUiEER OF
C RECORD InAGES (NIPS). OTHERUISE, THERE MAY BE ANY
C NUBIER OF IA.AGES PER SEQUENCE STRING.
C
C (3) RECORD IMAGE - THIS IS THE CHARACTER STRING WHICH
C EXISTS UN A SINGLE INAGE. FOR EXANPLE, AN IMAGE 'ICHT
C CC'SIST OF A FO2TRAN CARD, IN VHiCH CASE THE RECORD
C I"IAGE CCGSISTS OF 00 CHARACTERS.
C
C (4) PROCESS STRING - THIS IS AN INTERNAL CHARACTER
C STRIN;G USED IN FREFOR TO PROCESS DELIMITED DATA.
C THE LENGTH OF THE STRING IS SPECIFIED BY HOPS, WHICH
C hUST JE Al INTEGER ,H.ULTIPLE OF THE ,NUMBER OF ASCII F
C CHARACTEF.S WHICH CAN BE FTCRED IN A SINGLE MACHINE
C -,UDR. IN EFFECT, THE PROCESS STRI N LIhITS THE
C LE;NGTH CF ALPHKNUMERIC CONSTANTS AND THE ACCURACY OF
C NUmERiCAL CO;.NSTAN1S.
C
C SU' ROUTINE FREFOR RECOGNIZES INCORRECTLY FORMATTED NUBERS AND
C PRINTS AP ERROR DIAGNOSTIC. TIWO ERRORS ARE PECOGNIZED.
C

C U) SYNTAX ERROR IN THE MANfISSA - ANY STRING (EXCLUDIt G TEXT
C DELIMITED BY ASTERISKS) ,ECI,,iLNG UITH A NO:JALFH:-.ETICAL
C CHARACTER IS ASSUThEO TO UE A NUNEFICA1. CONSTANT. IF THIS
C CO,STANT CANNOT BE INIERPRETED, A SYNTAX ERROR PES.ILTS.
C (EXAMPLES: 2S.0OF+J2,i +S, hSTING)
C
C (2) SYNTAX ERRG, IN THE EXPONENT - THE EXPONENT OF A NUMERICAL
C CC,,.TAOT 1%ST BE AN NTFER VNLUE. (IT MAY INCLUDE AN
C A GEBATC SIgN) IF AN EXPCOT CA FNT BE,..E;ETD. A
C SYNTAX ERROR REPULTO. ('YA PKS 2E2., =2, 2I) "
C
C THE PPOCE.SIN UF DATA bY SUP1MUTINE FRECR OCC'JR? IN FLIUJ,
C MAJOR STEPS.
C
C (jj A PECCPD IM.AGE IS READ INTO ANl ItNTE',"EP AFPA, JOIM.



C ONE CHAACiER IS PLACED IN EACH ARRAY ELEMENT. A NEI.
C RECORD I;AGE I, OBTAINED WHEN LL OF THE CHARACTERS ON
C THE PREVIOUS IMAGE HAVE IEEN INTERPRETED.
C
C (2) EACH CHARACTER TN JCli IS TESTED AGAINST EACH OF THE
C FOUR STRING DELIMITERS AND THEN STORED IN AN INTEGER ARRAY,
C JCST, WHICH CONTAINS THE PROCESS STRING. ONE CHARACTER IS
C STORED IN EACH ARRAY ELEMENT. ,HEN A DELIMITER IS DEIECTED,
C TESTING STOPS AND PROCESSING IS INITIATED.
C
C (3) A TEST IS MADE TO DETERMINE WHETHER THE PROCESS STRI;lG
C CONTAINED IN JCST IS A IlUOERICAL VALUE OR AN ALPHANUMERIC
C CHARACTER STRING.
C
C (4) THE CONTENTS OF JCST ARE INTERPRETED AND THEN STORED IN
C THE ARRAY VALU BY EITHER A NUhBiiER DECODING ALGORITHh OR A
C CHARACTTR STRING PACKING ALGORITHM, ACCORDING TO THE RESULT
C OF THE TECT. THE ARRAY VALU IS PETURNED TO THE CALLINC
C PROSR,'M Lh IlT UHEN TlHE ENTIRE SERUENCE STRING HAS BEEN FEAD,
C TRANSLATED AND STORED.
C
C SU.ROUTINE FREFOR CCNTAINS A S'STEM DIAGNOSTIC MODE. IT IS
C SELECTED DY SPECIFYING ITST=i. THE DIAGNOSTIC MOI.E E,,SES A
C LISTIHG CF THE SYSTEM-DEPENDENT PARAMETERS AND ASCII CHARACTER
C VARIABLE!! TO SE PRINTED ON IHE FIRST CALL. SURTSEnUENTLY, ALL
C RECORD IMAGES AND PROCESS STRINGS WILL DE PriNTED PPIOR TO

C TRANSLAT!N ,
C
C

C $ VARIABLE DEFINITIONS , . . $*PK P.
C

C DFCT - FACTOR USED 10 COMPUTE DSTO.
C DSTO - VARIABLE TO STORE DECIMAL PORTION OF NUMIER.
C ESSN - SIGN OF EXPONENT,
C ESTO - VARIALE TO STORE EXPONENT.
C EXPN - EXPONENTIAL MULTIPLIER FOR UMiER PROCESSING.
C IALP - FLAG FOR ALPHANUMERIC CHARACTER STRiNG PROCESSINC.
C ICIi - liAGE POSITION OF FIRST CHARACTER IN THE PROCESS STRING.
C ICiM - FLAG TO DETECT SECUENTIAL CONNAS.
C I.RR - FLAG TO INDICATE ERROR IN NUIERICAL VALUE.
C IFLD - FLAG TO INDICATE TEXT PROCESSIPG.
C Ir:Of - INEX F0 CE:EPAL USE.
C ID - INLEX FOR GEr;EPAL riSE.
C ICN:C - FLAG TO INDICATE FIRST EXECUTION OF SULR(UTIHE.
C IPPO FLA r, TO INITIATE WORD PROCESSING.
C. IRET - FlAG TO EXIT HI:ROUTINE AFTER SEQUENCE COMPLETION.
C IST1 - VPiARLE TO STOPE iNTErER P[ERTIGN OF NUI{PE .
C IS - FL;.G TO T;, 4SFFR CHRACTFR FROM I 1AGE IT PPICESS STRING



C LIST - FLAG TO P;RODUCE SYSTZ1 DILdA0f3T7C.
C J CA E - ASCII CHARACTER FOR FIFTH ALPHAICT---ICAL CHARACTER, (C).
C JCAF - ASCII CiitARACTER FO0R FINAL ALPHAPBETICAL CVI ACTER,, (7)
c JCATI - ASCII CHI!,',CT ERD FC I NIT IAt. AL Pl!CSET!CAiL C I~CTF (A)
C JC AS - ASCII CHARACTER FOR CARS SYLl~lL, ()
C jCCG - ASCII CHIARACTER FOR ARTE4icMi S1?U, (
C 3CE P - ASCII CHARACTER F OR DEC-ikA PO' 1: (T,
C JCKA - CURRENT CHA RACTER IN THE PECORD IMAfS.
C JCIA1 - APRAY OF CHARACTERS IN TKE PECLHRDIN:.
c JCMI - ASCII CHARACTER FOR MINUS SYMB~OL, ()
C J CNF - ASCII CH~iRACTER FOR FINAL DECItlir{ CIHRtCTE'R, (9).
C J CNI - ASCII CHARACTER FOR INITIAl'L DcC1NAL C-Ar'ACTFR , (0).
C JCFrL - ASCII CHARACTER FOR PLUS SYMBIOL, ()

C J C *L - ASCII CHAPACTER FOR SLASH SYMBOL,(I
C JCSP - ASCII CHARACTER FOR SPACE SY.1FOL,
C J CSTI - ARRAY Or' CHARACTERS IN THE PROCESS SIRINC.
C JCTF - CHARACTER TRANSFER VARIABLE IN tNUNB"ER PPOCISSIHO
C JNUM~ - ARRAY OF DECODED DIGITS IN) NUMB2ER PROCESS1UC.
C N C 'T - 1UNBER OF- CHARACTERS COI.NTED.
C NC) M - POINTER FOR TEE IMAGE STRIOG CHWRA§'CTER ARRA'Y.
C NOCII - hAXIlNUMl NUhPER OF CHARACTERS PER INTEGER NJD
C NCLN! - NUiirPR OF CHARACTERS IN THE LAST 0ORD prOCEF-ED.
C IN FP I - MAXIMUM NJUMER C' F CHARACTERS PER IMAGE STPI hC
c ficps - MAXIMIUM NUMIBER OF CHAACTERS P[R PPOCE"S STRING.
C NCRUI - IIAXIHUM-, NUNSER OF CHARACTERS PER REA: L O.
c NCST - ACTUAL NUMIBER OF CHARACTER.S IN THIE PROCESS STRINC.
C hCTF - NUNEER OF CH ARACTERS) TRAiNSFERR:EDj By ECB/E
C NEST - POSITION OF FIRST CHARACTER TO IE TRANZFEREED.
C NIMS - NUMbER OF IMAES PROCESSEicD Il) CL2RENT SZTUENE STFI ,L.
c NIMT - TOTAL (JUMPER OF PFCODD GE PROCISFED,

NIPS - MAXIMUli NUMlBER OF ItMAGicES PER, SEOUUE
c NLST - POSITION OF LAST CHARACTErR TO PE TRAiNSFERRED
C NrflO - POINTER FnP. THlE PROCESS STRING CHA RACTFR tilRAY.
C N EO - TOTAL NUMBER OF SEGUEN~CE STRINGS FFOCESSED.
C NP, ! - SIGN CF t;.lBR.
C NV AI. - POINiER FOR THE OUTPU.T ARRAY VALU.

C -21 O~BE F :C'RDS TPAN7FERREDb BY [INLLD5 7/DFCU:TF.

C R(T - AY C[CUTAINIllG DECUOCOD DIGITS, IN NUMBER PROClSSINS.
C V,, L!) J OWiIJI A1 CONTAINING Pl)UCLSSFD l.
c
C

C rl~J~' S 7~( T, j ~ ." I1 Ji~

tTAhri/t I f N C/ j j/: FC R



C

C ~ ***$~**PASCII CHAPTER YiARIAPLES * * *

C
C
C
C DIAGNOSTIC S,-ITIC~i

DATA ITST/i/
C
c
C

C ***0*0 FORM~AT DE.FINITIONIS

I10 FORMAT(SOWi
20 FOMTIX2~H)SHSUBROUTINE FREFO. DIACNOSTIC 2-nfit))
SQR7T0 ~ 2~ ASCII CHARACTER VARIABiLES/)
'.G FOR.AT(1.X SH JCAE , X,4HJCAF,AXA HjCAI)4-A,41HfCA,

i '4X,4HJCCO,4X,4VHJCDP/
i 4H ,Ai,S(7X,Ai)/)

S0 F09.tiAT(iv,,5H JCMI,4X,4HJCN F,AXAH,.JCNI?4X,,HJCPL,
i 4X,4tHJCSL, 4X,4HiJCSP/
i 4H ,IS7,I/

55 FORMAT(iX,28H SYSTEM-DEPENDENT PAR(ANETERS!/)
60 FCPMAT(iX,5H U CI!,1X,411HCRW,4X 4HNNCPI ,4X,4H. WPS?,4YX4HNI1PS/
1 3H I1,4(bX,12))

7v"O~~k~(H~,S ERROR DETECTED BY SL*2f!JTINE FREFOR,
i i7H IN RECORD IMAGE 14,iX,li(,i))

i3 FW)h AT( iX, Z10A i)
90 FOR'iT(iX,8H C0LUdl; ,I3,2X,i6HPPOCES'3 STRiIC: ,2OAi)

I 10 FOP A(/ X ,31( ilri) , i6H END DliAfOSTIC ,30( iiit)
12 0 FOFU ATI X, i7H SEGUU'ICE ST-I'G 1, l, ,17::fECC-D I'A(.VE: 14)
1 -11 FOP, rI I

~5r FOMT(,1
C
C
c



C
C INITIALIZE 1/0 UNIT 6 TO TERMINAL.

OPEN(UNIT=6, DEVICE='TTY')
C
C THIS SECTION FIRST TIME ONLY.
C

IF (1011C.."E. D) COT0200
C
C INITIALIZE FLAGS FOR FIRST CALL.

NCIM=NCPI
C
C DIAGNOSTiC: ASCII CHARACTER VARIABLES
C SYSTEM DEPENDENT PARAMETERS.

IF(ITST.E0.0)GOTO2-00
WRITE(6,20)
WRITE(6,30)
JRITE(b,43)JCAiE)JCAF-,JCAIJCA,,JCCO)JCDP
UR II E(6,50)JCM I, JFJC1IJCLJCSL,JCEYr
,lRITE(6,-S)
WRIP~TE(6,60)N,,CIU,N CRW,INCP I NCPS)N IPS
Wi-)IT E (6, 110)

C
C INITIALIZE VARIAI:LES FOR NEW' SEULENCE STRING.

200 IF(flCIM.E0.NCPI)NIMS=0
IFLDZO-
I P. 11T= C
N VA L I
ICOI~i

C

c. ~ *~* LO, iP UPTL NDCF CrEEJC STRING APA L NSUT illK5

D022OI1NDori ,NCPS
'K'- JCST (It, "iI):nH

C INITIALT7E VARIALLES FOR NEWi PPOU.ES STR! !

NCST=0



C
C
C
C $ ** ****LOOP U-NTIL END OF PROCESS ST21NG ~ *~

310 IF(IPP.O.EQ.i)OTO23O
C
C GET A CHARACTER FRCM THE RECORD IMAGE.r

IFWrCIM .NE.NCPI )COT0330
IF(NIMS.LT .NIPS)GOTQ320

C:
C MAXIMUM IMAGE NUMBER EXCEEDED. TERMINATE SEQUENCE.

JClIM 0CP I )=4CSL
NCIM=NCPI-i

C END Or' IdAGE ENCOUNTERED. READ A NEW RECORD IM1AGE.

N IMrS=Nli'S+i
lJIlT=NI IT + i
R EAD (5,1) (J CIM.( IND ) 11NDO= i ,NCPI)

C DIAGNOSTIC: P21NT RECORD IMAGE,
IF(ITST.EQ. 0)GOTO330
WRITE(6,20)
WR ITE (6, 126 )NSEQ, NIMT
WRITE~b,30)

C INITIALIZE VARIABLES FOR CHA~RACTER COMPARISON TESTS,

33r IPFO~i

JCHA~jc I icI1N)
C
C TEST CPNARACTER AGAINST DELIMITERS WHICH TEEAiINATE PPOCESS STRING.
I;

C TEST FlGP SLASH LELIMITEP,(I
IF(JCHgI.NE .JCSL)G',,1i740

C
f~ TEST FER AcSTEHES ICLliMTER, (f)I



345 1IFLD- i
GOT03iD

C
C TEST FCR COMMAi DELIMIITER, ()

350 iF(.NOT. (JC'n'.EG.JCCO.ANDP.lFLD.EQ.0))OTO6,Q
IF(ICOM.NE.i)GOTO35S
IALP=i
ISTR=i
JCHA=iH
GO'T037C

355 ICCMi=i
GOTHUi

C TEST FOR SPACE DELIMITER, ()
-0 IF(JCHA.EQ.JCEP .AN D.IFLD.EQ.0j)GOTO-3i.

I PP.0=0

IALP=IFLD

C STCUE UnIARACTER IN PROCESS STRING.
370 iF(IS.T..E.l)G0T0330-

0 NJCST=NCST+i
JCST (rCST)=JCHA

C
C TEST NU "'HP OF CHAPACTER.S STORED I N PRFOCESS ST,,i,1 .

'33 0 IF WHET. LT. NCS)CO 103BO
IPRO=l
GOT03110

C
C
c
C ~ *~*** TRANSLATE TH E PROCESS STRIOG * * * *

C TEST rOR EMPTY PROCESS STPING, DYPASS TRANSLATION,
2350 IF ( .CcT .E .) GOT0210

C
c DIrlifNOSTIC: PRINT PROCESS STUING.

IF (T TT.E9. 0)COTO040
I CIt=CDIN-CST

C TEST F011 eUIDER P!PUESSII4G OR CHAPACTEP STPI:;G PPOU"CSSING
21 1j IF(IAP EQ.I) OR. U Cc T I.LE.JCAF 0-I jCC ( I G J( AI



c
c * .****P* NUMIER PPOCESSflJG *W~

C INITIALIZE VARIAB~LES.
400 IERR=('

NFSTht
NPRO=1
ICIM=MCIM-NCST
I STO= 0
ESTO=0
DSTO=C.
DFCT~i.
ESGN -i
NSGN=i

£ PROCESS INTEGER PORTION.

C TEST FOR hINUS SIG.
IF(JCST(INPRO) JNE. !C,!I)GGTC4iG
NP RO=NP R +i
NsCN= -i
INFSTzKPRO
GOT0420

c
£ TEST FOR PLUS SISN.

410 IF(jCS T(tNP,'OI.NE.J'CFL)GOTO420
NP PO=O. ' 0+i
NFST=NPR 0

C
C DETERtIIE LENGTH OF INTEGER PORTION.

420 IF(.UiOT.(.JCT(PO).LE.JC F.AND.JCST(NiPRO).GE.JCN'I))G0T04'23
NPPO=!;pFO+1
GOTG-.ti 23

c
£ STORE INTEGER PORTION.

42-3 [UT =1PRO-SF ST
IF(NCCTEO. )G0TO430
Nli*F1 + (NUT-1) )/CTII
HCL'v!=CCT-tJC'A * 0114 1 F-i)
DO42410D0=i dNWTF

tNLG~i rriFKTi tCTF-i
EVtODEH'CTF ,150 ,jCTF) (.JCCT(IJDI) IHDl=NrST,oLlT)
DEU~:Tt6 CF UUIM fD7 CF
9F -)T=NK.ST 41

11424P-1N~ NCTF
FX:P~Jz 2(C-IND I-Nc !!I( IN;DO-l f



I ST O=I STO+Jt.UM( INDi I)*EXPN
424~ CONTINUE

C
C PROCESS DECIMAL PORTION.
C
C TEST FOR DECIMAL POINT.

430 IF(JC3 T(NPRO).NE r'.JCDP)C'OTOi50
NP RO=NP R +i

C NFST= '?RO

C DETERMINE LENGTH OF DECIMAL PORTION.
440 IF(.1NQT.(JCST(NPRO).LE.JCN'F.AN D.JCST(N4PPO).CE.JCNI))C14",

NPiO=NppOt
GOT 044

C STORE DECIMAL PORTION.
442 NCCTZNPRO-NFST

IF(NCCT .EO.0)COTO.5S0
NNTF=i+ (NCCT-i ) / NCl*
NCL'vi=NCCT-NCL4'vJ (NUlTF-1)
DO044 4 1 N0= ,NWTF
NCTF=NCIL (JIC I U-CLW) VI (NDO/W!TF)
NLST=NFST+NCTF- i
ENCODE NCTF,5V,JCTF JCSTCIN)Di) I NI=NFST,NL5T)
DEM~DEUNCTF,i140,JCT-r) (P1UM( NDI), I NDi~t,ICTF)
t4F'3T =NLST + 1
DO444INDi=i tlCTF
DFCT=LF'CT..i
DSTO-DST O4DFCT*RNUh(INDi)

444 CGNTINUE
C
0 TEST FOR SYNTAX EPRlR IN MANTISSA.

4':)0 lF(NPR0GT.NCfT)GOTO4P20
IF(JCST(NiYRO) .EQ.JCAE)GOTO![J
IEPP=i
GOTO430

C PROCESS EXPONENT.

4 L0 tIp l~f'P]rp 5O+ 1
NFOT~P 0

c T ErrT pI I Ir I
IF (jC-T 01P O) .NE. JCM I)C0104/

;'T "j;



C
C TEST FOR PLUS SIGN.

46S IF(JCST(tiPRO).JE.JCPL)GOTOI 70
[iPRO=NPRO+i
NF ST =N R0

c
C DETERMINE LENGTH OF EXPONENT.

NPRO=NPPO+i

COT 0470
C
c STORE EXPONENT.

472 $11CC T=NPRO-rNFST
IF(NCCT.EQ.O)G0T047':
NWTF=i+ (NCCT-i) /NCIW
NCLW=NCCT-NC I * (NWT F-i)
DO0474 1 PDO=i, NUTF
NGT FrHCI t!-GIC I 3--NCLW)*(IN0/N'WTF)
NLST=lNFST+NCTF-i
ENCODE(NlCTF1iSO),JCUTF)(JCS T(INDi) ,IN~li=NFST,NqLET)
DcECODENqCTF, 130,JCTFJ) NUM NDi) NDi=i,NCTF
r FSQT=NLSzT+ j
D0474INDi=i lllCTF

E6TO=E'aTO+JNUMi( I'Di ) EXPN
474 CONT I0dEc

C
C TEST FOR SYNTAX ERROR IN EXPONEitT.

47S IF(IJPR9.GT.NCST)GOTO480
IERR=2

C
r. COMPOTE NUMBER AND STORE IN VALU ARRAY.

480 flVAL=rWAL+i
IF(IERR.bE. 0)GOT04@T,

c STOE VALID .1Ur"iIEP,

C

c PP'JLLS Eri"OR~
C

4bS !iVt(A'L 7 H



WRITE(6,80)
UR HE (6,80)
W!RITE(6 ' 80)
WR IT E(6,76) NIMT

WRITE-(6,90)ICIMiIJCST(INiDO) ,IN4D0=i,NC'S)

WRITE(6, 1)
C
C RETURNJ TO BECINING OF PROCESS STRING LOOP.

GO II" 210
c

c

C *****~~~ CHAPACTER STRING PROCESSING * * * *

C PLACE CHARACTER STRING IN VAL'J USING ENCODE.
50 C NCTF=NCR ( + (,CST- i) /NCRU)

ENCODE (ITF,0 , VALU (NYL+ i) )CST (I D 0) , I.ND 0 =i ,NCST)

C, ADJUST NVAL.

C RETURN TO EFECIUNIUG OF PROCESS STINTG LOOP.

C
C
C FND OF EEQUENCE STRING, RETURN TO CALLING PRGA LNIT.

26P' IF(ITST.EQ.D)r,0T027G
WR ITE (6,Mi )
'R I TE (6,30)

END



,ILMEI


